ADAM10-mediated release of heregulin confers resistance to trastuzumab by activating HER3
نویسندگان
چکیده
Receptor tyrosine kinases of the HER-family are involved in the development and progression of multiple epithelial tumors, and have consequently become widely used targets for new anti-cancer therapies. Trastuzumab, an antibody against HER2, has shown potent growth inhibitory effects on HER2 overexpressing tumors, including gastro-esophageal cancer, however, resistance to this therapy is inevitable. Unfortunately, a paucity of data on the cellular mechanisms of resistance to targeted therapeutic agents exists in esophageal adenocarcinoma. Using primary established HER2-overexpressing cultures and patient-derived xenograft models, we now reveal a novel resistance mechanism to trastuzumab in esophageal cancer: In response to trastuzumab, both HER3 and the metalloprotease ADAM10 are simultaneously upregulated. The proteolytic activity of the latter then releases the HER3 ligand heregulin from the cell surface to activate HER3 and confer resistance to trastuzumab by inducing compensatory growth factor receptor signaling. Blocking either HER3 or ADAM10 effectively reverts the acquired resistance to trastuzumab. Our data thus provide strategies to inhibit this signaling and circumvent resistance to trastuzumab.
منابع مشابه
Heregulin-expressing HER2-positive breast and gastric cancer exhibited heterogeneous susceptibility to the anti-HER2 agents lapatinib, trastuzumab and T-DM1
BACKGROUND Overexpression of heregulin, a HER3 ligand, is one mechanism that confers resistance to the anti-HER2 agents trastuzumab and lapatinib. We investigated the impact of heregulin expression on the efficacy of HER2-targeted therapeutic agents, including trastuzumab, trastuzumab emtansine (T-DM1) and lapatinib, in vitro and in vivo and evaluated the heregulin messenger RNA (mRNA) levels i...
متن کاملThe anti-HER3 antibody patritumab abrogates cetuximab resistance mediated by heregulin in colorectal cancer cells
We previously showed that tumor-derived heregulin, a ligand for HER3, is associated with both de novo and acquired resistance to cetuximab. We have now examined whether patritumab, a novel neutralizing monoclonal antibody to HER3, is able to overcome such resistance. Human colorectal cancer (DiFi) cells that are highly sensitive to cetuximab were engineered to stably express heregulin by retrov...
متن کاملThe pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer
Afatinib is a second generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) characterized as an irreversible pan-human EGFR (HER) family inhibitor. Afatinib remains effective for a subpopulation of patients with non-small cell lung cancer (NSCLC) with acquired resistance to first generation EGFF-TKIs such as erlotinib. Heregulin activates HER3 in an autocrine fashion a...
متن کاملADAM10 and ADAM17: New Players in Trastuzumab Resistance
The availability of the anti-HER2 monoclonal antibody, trastuzumab (Herceptin) has transformed the outcome of a subgroup of patients with breast cancer that previously had a poor prognosis, i.e., those with HER2positive disease [1]. Although HER2 gene amplification/ overexpression is necessary for breast cancer patients to receive trastuzumab, more than 50% of patients positive for this biomark...
متن کاملTrastuzumab has preferential activity against breast cancers driven by HER2 homodimers.
In breast cancer cells with HER2 gene amplification, HER2 receptors exist on the cell surface as monomers, homodimers, and heterodimers with EGFR/HER3. The therapeutic antibody trastuzumab, an approved therapy for HER2(+) breast cancer, cannot block ligand-induced HER2 heterodimers, suggesting it cannot effectively inhibit HER2 signaling. Hence, HER2 oligomeric states may predict the odds of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016